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SUMMARY 

Massively parallel finite element computations of the compressible Euler and Navier-Stokes equations using 
parallel supercomputers are presented. The finite element formulations are based on the conservation variables and 
the streamline-upwind/Petrov-Galerkin (SUPG) stabilization method is used to prevent potential numerial 
oscillations due to dominant advection terms. These computations are based on both implicit and explicit methods 
and their parallel implementation assumes that the mesh is unstructured. The implicit computations are based on 
iterative strategies. Large-scale 3D problems are solved using a matrix-free iteration technique which reduces the 
memory requirements significantly. The flow problems we consider typically come from aerospace applications, 
including those in 3D and those involving moving boundaries interacting with boundary layers and shocks. 
Problems with fixed boundaries are solved using a semidiscrete formulation and the ones involving moving 
boundaries are solved using the deformable-spatial-domaidstabilized-space-time (DSD/SST) formulation. 
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1. INTRODUCTION 

The aerodynamic characteristics of new design concepts in the aerospace industry are usually 
measured in wind tunnels. When using a wind tunnel as a design tool, engineers are required to go 
through the expensive and time-consuming process of building a precise physical model and 
subjecting it to several costly experiments. Any modification to the design configuration demands a 
new model and experimental data. 

Computational fluid dynamics (CFD) offers a way to partially replace costly, time-consuming and 
difficult wind tunnel tests. CFD entered the industry almost two decades ago. At that time it was only 
possible to simulate simple 1D time-dependent problems. The advent of the first series of Cray-family 
supercomputers in the early 1980s contributed to the power of CFD and enabled designers and 
researchers to model transient problems in 2D. In some cases a simple steady state application in 3D 
was simulated, but this computational power was still far from what was needed in the aerospace 
industry in order to partially replace experiments in wind tunnels. 

Performance enhancements of single-processor supercomputers improved asymptotically in the late 
1980s and reached a certain point where further improvement seemed very difficult. These machines 
are based on a single-instructiodsingle-data (SISD) architecture and their performance is limited by 
the material properties of the computer chips. Consequently, the need for an alternative computer 
architecture emerged. The subsequent development of supercomputers focused on parallel machines 
with single-instructiodmultiple-data (SIMD) or multiple-instructiodmultiple-data (MIMD) architec- 
tures. 
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Today there are many parallel supercomputers built based on either the SIMD or the MIMD 
structure. The MasPar MP-2 and the Connection Machine CM-200 are examples of the SIMD 
structure, while the nCUBE 2E, the Cray T3D and the Connection Machine CM-5 are massively 
parallel supercomputers with an MIMD architecture. The CM-5 can also operate in SIMD mode. 
These supercomputers have computational power which allows researchers to simulate 3D time- 
accurate fluid flow problems. Today we are at a stage where the steady state solution of a Euler flow 
past an entire aeroplane can be obtained in just a few minutes. This computational power is still not 
enough to understand the physics of some real-life applications. As computers advance towards 
teraFLOPS (trillion floating point operations per second) speeds by the end of this century, they will 
play a significant role in the design, manufacturing and control system processes in industry. 
Developing robust, accurate, efficient and simple algorithms to handle these tasks is a continuing 
challenge. 

In this paper we present finite element methods to solve a large class of compressible flow 
problems using the Connection Machine massively parallel supercomputers CM-200 and CM-5. In 
Section 2 we first review the governing equations of compressible fluid mechanics and heat transfer. 
Two sets of equations, Euler and Navier-Stokes, are used to model the compressible flow field in 
our problems. For the compressible Navier-Stokes equations we assume that the fluid is Newtonian 
and that the heat transfer by conduction is modelled by Fourier's law. 

The solution of problems with fixed domains is obtained using a semidiscrete formulation. This 
finite element formulation is stated in the context of the conservation variables and the potential for 

es in high-inertia flows is prevented using the streamline-upwindPetrov-Galerkin 
(SUPG) stabilization method. The Galerkin method by itself is inherently a central difference scheme 
and it is well known that central difference schemes lack stability and result in node-to-node spurious 
oscillations in advection-dominated flows. The SUPG method is a general weighted-residual 
upwinding scheme which minimizes such oscillations and preserves consistency. The SUPG 
formulation was first developed by Hughes and Brooks' for incompressible flows. A comprehensive 
description of the formulation, together with various numerical examples, can be found in Reference 2. 

For the Euler equations, the SUPG method was first developed by Tezduyar and H~gHes.~ Using 
the entropy variables, a similar stabilized formulation with an in-built shock-capturing term was 
developed later.4" It was shown that the entropy variable formulation is more robust than the 
conservation variable formulation in solving problems involving shocks and sharp boundary layers. 
Recently Le Beau and Tezduyar7 and Le Beau et al.' incorporated a shock-capturing term into the 
conservation variable formulation and demonstrated that this formulation generates solutions with as 
a high quality as those obtained with the entropy variable formulation. 

The simplicity of the conservation variable formulation compared with the entropy variable 
formulation motivated us to extend the formulation further and apply it to the Navier-Stokes 
equations. The results from this effort were first reported by Aliabadi et aL9 and followed by many 
examples in References 1&12. In Section 3 we present the semidiscrete formulation following the 
stabilization details. 

Section 4 is devoted to describing the time integration techniques for solving the coupled non- 
linear ordinary differential equation systems resulting from the semidiscrete formulation. These 
equations are solved within the framework of the predictor/multicorrector algorithm by using either 
explicit or implicit techniques. The implicit computations are carried out with an iterative solution of 
the coupled linear equation systems encountered at each step of the predictor/multicorrector 
algorithm. Large-scale 3D problems are solved using matrix-free iterations which are also described 
briefly in this section. 

A major challenge in computational fluid dynamics is how to handle problems involving moving 
boundaries and interfaces. These kinds of problems are encountered in many practical engineering 
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applications. In manufacturing, almost all processes such as casting, rolling, extrusion, forging and 
pressing involve moving boundaries. Fluid-structure interactions are another area where moving 
boundaries play an important role. A few examples in this category are the movement of aircraft 
control surfaces, flutter phenomena, moving mechanical parts interacting with fluids and opening of 
a ram air parachute. The semidiscrete formulation is based on a Eulerian approach. In the Eulerian 
approach the spatial domain is fixed. To handle problems in which the spatial domain deforms, the 
Eulerian approach may be mixed with the Langrangian approach, resulting in the arbitrary 
Langrangian-Eulerian (ALE) method (see References 13-1 6 for details). 

The deformable-spatial-domaidstabilized space-time (DSD/SST) finite element formulation is 
another approach which can be used to address the issue of moving boundaries and interfaces. This 
method was introduced by Tezduyar et al. 1 7 , 1 8  to solve incompressible flow problems involving 
moving boundaries and interfaces such as free surfaces, two-liquid interfaces and fluid-structure and 
fluid-particle interactions. Later a similar formulation was developed for compressible flows." In 
the DSD/SST formulation, the finite element interpolation polynomials are functions of both space 
and time and the stabilized variational formulation of the problem is written over the associated 
space-time domain. These interpolation polynomials are continuous in the spatial domain but 
discontinuous in time. The discontinuous interpolation polynomials in time allow the solution of the 
discrete equations at each time step. By taking advantage of the space-time approach, the DSD/SST 
formulation is inherently able to take into account the deformation of the spatial domain with respect 
to time. This formulation is described in Section 5. 

In Section 6 several numerical examples are presented to illustrate the application of these methods. 
Final remarks and the performance of our computations on the CM-200 and CM-5 are given in 

Section 7. 

2. GOVERNING EQUATIONS 

Let Sl, c [w"" and (0, T )  be the spatial and temporal domains respectively, where nsd is the number of 
space dimensions, and let Tt  denote the boundary of R,. The spatial and temporal co-ordinates are 
denoted by x and t respectively. We consider the 3D unsteady compressible Navier-Stokes equations 
without source terms. These equations in conservation law form can be written as 

(1) 
aP 
- + V * (up) = 0 on Q, Vt  E (0, T ) ,  
at 

a O + V . ( u p u )  at = - -Vp+V.T on Q, 

(3) 
-+V. (upe)=-V*q-V.pu+V. (Tu)  a(Pe> on,  V t E ( 0 , T ) .  

at 

Here p(x, t),  u(x, t),  p(x, t) and e(x, t )  are the density, velocity, pressure and total energy per unit 
mass respectively. The viscous stress tensor and heat flux vector are denoted by T and q respectively. 
The pressure is related to the other state variables by an equation of state of the form 

P =P(P, 9, (4) 
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where 
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is the internal energy. For ideal gases the equation of state takes the special form 

p = (Y - 1)pC 

T = p[Vu + ( V U ) ~ ]  + I(V*u)I, 

(6) 

where y is the ratio of specific heats. The viscous stress tensor T and heat flux vector q are defined as 

(7) 

q = -Kve, (8) 

where K is the conductivity and 8 is the temperature with the following relationship to the internal 
energy: 

Ri e x - ,  
Y-1 

(9) 

Here R is the ideal gas constant and it is assumed that the viscosity coefficients y and p are related by 

(10) y = -2 
3 p. 

The variation in the viscosity with temperature is modelled by Sutherland's empirical formula (3 3/2 er + eo 
e + e o  P = Pr 

where Oo is an experimentally determined constant and pr is the viscosity at the reference temperature 
OF The Prandtl number Pr, assumed to be given, relates the heat conductivity to the viscosity according 
to 

In terms of conservation variables the compressible Navier-Stokes equations ( 9 4 3 )  can be written 
in the vector form 

au aF; aEi 
at ax; ax; 

- + - - - = O  o n Q  V t e ( O , T ) ,  

where U = (p ,  pul ,  pu2, pu3, pe) is the vector of conservation variables and Fi and Ei are respectively 
the Euler and viscous flux vectors defined as 

F; = 
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Here uj, qs and z~~ are the components of the velocity, heat flux and viscous stress tensor respectively, 
repeated indices imply summation Over the range of the spatial dimension and the identity tensor is 
denoted by 6,. 

To provide a convenient set-up for our finite formulations, equation (1 3) is written in the form 

where 

is the Euler Jacobian matrix and K, is the diffisivity matrix satisfying 

The explicit definitions of Ai and K, are provided in the Appendix. 
Equation (16) is complemented with initial and boundary conditions of the form 

U(X, 0) = uo, (19) 

where ek is an orthonormal basis function in R""', and ndof is the number of degrees of freedom. Note 
that the Euler equations can be obtained by dropping the diffusive terms from equation (1 6). 

3. SEMIDISCRETE FINITE ELEMENT FORMULATION 

Consider a finite element discretization of a fixed spatial domain R into subdomains Re, 
e = 1, 2, . . . , riel, where n,l is the number of elements. Based on the discretization, corresponding 
to the trial solutions and weighting hnctions respectively, we define the finite element function spaces 
Yh and V h  for conservation variables. These function spaces are selected as subsets of [H'h(S2)]n"f, 
where Hlh{12) is the finite-dimensional function space over 0 

Yh = (uhluh E [H'h(s2)J"do', Uh1ne E [P'(fie)lndof, uh 'ek=gk On JJ,,), (22) 



788 S. K. ALIABADI AND T. E. TEZDUYAR 

The stabilized finite element formulations of (16) is written as follows: find Uh E Y h  such that 
V W h E V h  

In the variational formulation given by (24), the first two terms together with the right-hand-side 
term constitute the Galerkin formulation of the problem. The first series of element-level integrals in 
(24) are the SUPG stabilization terms added to the variational formulation to prevent spatial 
oscillations in the advection-dominated range. The second series of element-level integrals in (24) are 
the shockkapturing terms added to the formulation to ensure stability at high Mach and Reynolds 
numbers. 

In this work we propose a 7 which evolves from the one introduced by Tezduyar and hug he^.^ We 
define the SUPG stabilization matrix 7 to be 

7 - max[O, T~ + 5 ( ~ ~  - ~g - ?do], (25) 

where I ,  is the stabilization matrix due to the time-dependent term, is the stabilization matrix due to 
the advection terms, ~g and ?d are the matrices subtracted from T, to account for the presence of the 
shock-capturing term and physical diffusion respectively and 5 is the weighting coefficient. These 
matrices are defined as 

rn L 

3(1 + 2aCr)'" 
Tt = 

h 
7 -  

a - 2(c + lu. PI)I' 

(c + lu - P,I2 I, 
6 

7 g  = 

B?diagK11 + &diagKtz + PidiagK33 
Td = 

(c + lu * PD2 

(c + lu * P W  
where c is the acoustic speed, Cr is the Courant number given by 

h Cr = 

and h is the element length. Here 

where 4 - l  is the inverse of the Reimannian metric t e n ~ o r . ~  For the time-marching algorithm the 
weighting coefficient [ is selected as 

2aCr 
[ =  1 +2CrCr' (33) 
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where tl is a parameter which governs the stability and accuracy of the algorithm (see next section). 
The shock-capturing parameter 6 used in this formulation is given as7 

where 4 k  are the components of the Jacobian transformation matrix from physical to local 
co-ordinates. The structure of 6 is such that it vanishes rapidly in the regions where the solution is 
smooth and is significant in the regions with sharp boundary layers and shocks.'' 

4. TIME INTEGRATION METHODS 

The spatial discretization of equation (24) leads to a set of coupled non-linear ordinary differential 
equations of the form 

Ma + N(v) = F, (35) 
where v is the vector of nodal values of U, a is its time derivative, M is the generalized 'mass' matrix, 
N is the non-linear vector function of v representing the terms from the steady state equations and F is 
the generalized 'force' vector. To solve this equation system, we use the predictor/multicorrector 
transient algorithm described in Reference 3. In this algorithm the equation is temporally discretized in 
a finite difference fashion. The time-marching procedure is then performed by looping over the 
discrete time steps t,. With n as the time step 
represented by a,, v, and F, respectively. The 
steps. Given v, and a,: 

1. Predictor phase 

(a) i=O 
(b) predict a 

2. Corrector phase 

(a) compute R = F,+ - [Mii+N(V)] 
(b) select M 
(c) solve MAa=R 
(d) update a,+1 = a+Aa 
(e) update v,+~ = V+aAtAa 
(f) i= i+l ;  V=V,+~; a=a,+l.  

(c) V == v,+(l- a)Ata,+aAta. 

counter, approximations to a(&), v(tn) and F(t,) are 
algorithm can then be summarized in the following 

Here tl E [0, 11 is a parameter which governs the stability and accuracy of the method. To obtain a 
steady state solution using this predictor/multicorrector transient algorithm, a is set to one. In this case 
the algorithm is a backward difference type. When a = 0.5, the algorithm is second-order accurate in 
time and suitable for time-accurate computations. The fully explicit algorithm may be obtained by 
assigning a= 0 (forward difference). The details of the stability and accuracy of the algorithm can be 
found in Reference 2 1. 

In the predictor/multicorrector algorithm the non-linear iteration loop starts in the corrector phase. 
In this loop the additional non-linear iterations are performed by replacing i with i + 1 and the 
calculations resume with the evaluation of the residual vector. This loop continues until the 
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normalized L2-normal of the residual vector satisfies the convergence criteria. The solution at time 
step n+l is defined by the last iteration. Depending on the selection of M, this algorithm leads to an 
explicit or implicit time integration method. 

4.1. Explicit method 

In the explicit method, M is selected as a diagonal matrix. There are several ways to select an 
appropriate diagonal matrix M. In the present work we select M to be a lumped mass m a t r i ~ . ~  The 
simplicity of the inversion of a diagonal matrix makes the algorithm fast and inexpensive. The penalty 
for this is the time step size limitation governed by the Courant-Friedrichs-Lavy (CFL) condition. For 
the compressible Navier-Stokes equations this condition can be expressed as22 

Despite this time step size limitation, this explicit method is particularly suitable for time-accurate 
computations. This is because in time-accurate computations, limitations on the time step size already 
exist owing to the need to accurately resolve the time-dependent behaviour. 

4.2. Implicit method 

In the implicit method, M is defined as 

M = M + UAtC. (37) 

Here M is no longer a diagonal matrix and therefore the coupled linear equations must be solved with 
either a direct or an iterative method. 

Although M has a symmetric profile, in general, it is a non-symmetric matrix and this precludes the 
use of fast direct symmetric solution techniques. The commonly used non-symmetric direct solution 
techhniques are the Gaussian elimination and Crout factorization methods. 

All direct methods require the global formation of M. Most entries of this matrix are zero, because 
each node in the mesh is connected only to a few nearby nodes. This matrix is usually stored in a 
skyline profile23 to minimize the memory requirements. In this way the number of stored entries is bN, 
where b is the mean bandwidth and the size of M is N x N. In many cases the mean bandwidth can be 
reduced by reordering the node numbering. The reordering is especially helpfd in cases when the 
mesh is generated using an automatic mesh generator.24 

When a linear system has a large number of unknowns, direct methods become unwieldy. The major 
drawback of these methods is the memory requirement for storage. For large problems the memory 
requirements become very high and this makes the application of these methods, even on the advanced 
supercomputers with gigabyes of memory, impossible. Another disadvantage of these methods is the 
rapid increase in the number of arithmetic operations with the problem size. For example, in the 
Gaussian elimination method the number of arithmetic operations is proportional to Nb2. Thus the time 
required for the solution of a linear system by the Gaussian elimination method rapidly increases as the 
number of unknowns increases. These undesirable properties limit the application of these methods to 
small problems. 

In most practical cases, even with the advanced supercomputers, the iterative methods are the only 
choices to solve large systems of coupled equations. In finite element computations, iterations can be 
performed without the need for the global formation of M. Also, in most of these iterative methods the 
number of arithmetic operations scales linearly with the problem size. Unlike the direct methods, the 
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iterative methods are also naturally amenable to parallel processing. In the computations reported in 
this paper, iterations are carried out by using an appropriate preconditioner together with the 
GMRES2s326 search technique. 

The iterations require matrix-vector multiplications of the form BY. Clearly, to perform this 
multiplication, matrix B need not be formed globally. Instead, this multiplication is performed by 
recognizing that 

&I 

e= 1 
B = A b e ,  

where f=j is an assembly operator and be is an nee x nee matrix representing the contributions to B from 
element e. Here nee is the number of equations associated with each element e.  Furthermore, we 
recognize that 

(39) 

where ye is an nee x 1 vector representing the entries of Y corresponding to element e. 
Then the matrix-vector products are carried out as follows. For all elements: 

1. Map ye from Y. 
2. Perform the element-level matrix-vector product ze = bey'. 
3. Assemble z" into Z. 

In 3D computatations the dimensions of be are 40 x 40 for trilinear hexahedral elements and the 
memory required to store each be in double-precision is 12,800 byes. The number of elements in our 
3D application problems typically varies from 150,000 to 1,000,000 approximately. This adds up to a 
storage demand of 2-13 Gbytes just for the entries of be. The upper end of this range is practically 
impossible to afford. In the matrix-jree iterations the vector z' can be computed directly without the 
formation of the element-level matrices. In this way a substantial amount of memory saving can be 
achieved. 

5 .  SPACE-TIME FINITE ELEMENT FORMULATION 

We use the DSD/SST formulation to obtain solution of the problems involving moving boundaries and 
interfaces. In the DSD/SST formulation we partition the time interval (0, T )  into subintervals 
I, = (f,,, t,,+l), where t ,  and tn+l belong to an ordered series of time levels 0 = to < t l  c . . . < t N =  T Let 
R, =a, and r, = Ttn. We define the space-time slab Q, as the domain enclosed by the surfaces R,, 
fin+,, and P,, where P, is the surface described by the boundary T, as t traverses I,. 

The finite element discretization of a space-time slab Q, is achieved by dividing it into elements E, 
e = 1, 2, . . . , (ne& where (net), is the number of elements in the space-time slab Q,,. Based on this 
discretization, we define the finite element function spaces 9'; and Y"; respectively corresponding to 
the trial solutions and weighting functions as 
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The DSD/SST formulations for equations (1 6) can be written as follows: start with 

(Uh), = uh,; 
sequentially for Ql, Q2, . . . , QN-  given (Uh);, find Uh E 9': such that V Wh E V: 

In the variational formulation given by (43), the following notation is used: 

Jk. (. . .)dQ = 1 1 (. . .)dQdt, 
I. Q, 

(45) 

In this formulation the first three integrals together with the right-hand-side integral represent the time- 
discontinuous Galerkin formulation of the problem. The third integral enforces, weakly, the continuity 
of the conservation variables across the space-time slab. The first series of element-level integrals in 
formulation (43) comprises the SUPG stabilization terms and the second series contains the shock- 
capturing terms added to the formulation. The stabilization coefficients used in this formulation are 
identical with the ones given for the semidiscrete formulation in Section 3. 

6. NUMERICAL EXAMPLES 

In this section we present several examples to demonstrate the accuracy, capability, applicability and 
performance of both the semidiscrete and the DSD/SST compressible formulations. 

All these examples involve air flow with Pr = 0.72 and y = 1.4 and are solved in double precision 
(64 bit floating point numbers) on either the CM-200 or the CM-5. 

6. I .  Supersonic flow past a $at plate 

This 2D test problem is chosen to demonstrate the accuracy of both the semidiscrete and the DSD/ 
SST formulations. In this problem we consider Mach 2.5 flow past an adiabatic flat plate at Reynolds 
number 20,000. The Reynolds number is based on the freestream values and the plate length. 

The plate has unit length and the origin of the co-ordinate system is attached to the leading edge. 
The rectangular computational domain, which spans the area defined by -0.1 6 x1 6 1.0 and 
0.0 < x2 < 0.6, is discretized using 24,240 bilinear quadrilateral elements and 24,563 nodes. Figure 1 
shows the finite element mesh used in this computation. This mesh is designed in such way that in the 
direction normal to the wall the minimum element length is 0.0012. 
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Figure 1. Supersonic flow past a flat plate: finite element mesh 

At the left and upper boundaries we impose Dirichlet-type boundary conditions for all primitive 
variables, density, velocity components and temperature. On the plate surface, zero velocity and heat 
flux are imposed. The symmetry boundary condition is used along the line connecting the plate tip to 
the left boundary. All boundary conditions at the outflow boundary are homogeneous Neumann-type. 

The computation starts with freestream values as the initial conditions and continues until the steady 
state solution is reached. The steady-state solution consists of a relatively thin boundary layer and an 
oblique shock both formed at the leading edge of the plate and extending to the outflow boundary. The 
solution generated with the DSDiSST formulation is presented in Figure 2 with the Mach number 
distribution. In Figure 3 the skin friction coefficients computed with both formulations are compared 
with the skin friction coefficient corresponding to the modified Blasius solution, which is given as 

where + = 0-95 is a compressibility correction factor.27 The agreement between computed results and 

Figure 2. Supersonic flow past a flat plate: Mach number distribution 
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Figure 3. Supersonic flow past a flat plate: skin friction coefficient from computations and modified Blasius solution 

the modified Blasius solution are quite satisfactory. Figure 4 shows the pressure coefficient along the 
plate surface. The semidiscrete and DSD/SST formulations give almost indistinguishable results. 

6.2. 3 0  tmnsonicJlow past a commercial aeroplane 

Here we are looking for a steady state solution of the Euler equations which govern approximately 
the flow field at very high Reynolds numbers around the aeroplane. In this inviscid, transonic 
simulation the freestream Mach number is 0.798 and the angle of attack is 1.116". To solve this 
problem, we use a finite element mesh made of tetrahedral element. This mesh has 106,064 nodes and 
575,986 elements. The discretized surface geometry of the aeroplane is shown in Figure 5 .  

The computation starts with the freestream values as the initial conditions and, using the explicit, 
local time-stepping algorithm, 513,365 equations are solved at each non-linear iteration. In Figure 6 
the density contours corresponding to the steady state solution are presented. In Plate 1 the top image 
shows the mesh in the symmetry plane and the Mach number distribution on the aeroplane surface, 
while the bottom image shows the streamlines and surface pressure distribution near the engine. This 
solution is very close to the one reported in References 28 and 29. 

0.14 8 0.12 

l 0.06 

8 0.10 

0.08 

0.04 

0.02 

o'?!O 0:l 0:2 0:3 0:4 0:s 0:6 0:7 0:s d9 
X 

Figure 4. Supersonic flow past a flat plate: pressure coefficient along plate surface 



Plate 1. 3D transonic flow past a commercial aeroplane: the top image shows the mesh in the 
symmetry plane and the Mach number distribution on the aeroplane surface; the bottom image 

shows the streamlines and surface pressure distribution near the engine 



Plate 2. 3D supersonic flow past a delta-wing; the top image shows the pressure distribution on the 
wing surface and at a cross-section; the bottom image shows the top view of the delta-wing 

together with the pressure field around it 



Plate 3. 3D subsonic flow past a sphere: pressure distribution on sphere surface together with 
stream ribbons at time t = 200 



Plate 4. Supersonic flow through air intake of a jet engine: Mach number distribution at times 
t = 0.0,0.5,1.0,1.5,2.0,2.5 (from left to right and top to bottom) 
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Figure 5. 3D transonic flow past a commercial aeroplane: discretized surface geometry 
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Figure 6. 3D transonic flow past a commercial aeroplane: density contours 

6.3. 3 0  supersonic flow past a delta-wing 

In this problem the air flow past a delta-wing model of an aerospace vehicle at Mach 3 is simulated. 
The Reynolds number based on the freestream values and the maximum chord length (along the plane 
of symmetry) is 1.1 x 1 06. Owing to the assumed symmetry of the problem, only half of the flow over 
the delta-wing is computed; however, projected nodes are created by a simple reflection to present the 
results for the entire delta-wing. 

The delta-wing has a wedge-type cross-section as an underbody and the comers merge smoothly to 
the flat surfact at the top. The delta-wing has unit length in the chordwise direction and tapers from 0.0 
to 0.69 units in the spanwise direction. The origin of the delta-wing is located at (0, 0, 0). The outer 
boundary which encapsulates the delta-wing has a conical shape with a spherical tip. The radius of the 
cone cross-section is 0.1 at x4 = 0-0 and grows to 0.83 at X I  = 1-8. The spherical tip is tangent to the 
cone at x1 = 0.0 with a radius of 0.108 unit length. The unstructured grid used to solve this problem 
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Figure 7. 3 iD supei rsonic flow past a delta wing: finite element mesh (coarsened for c :learer visualization) 

consists of 1,032,328 nodes and 1,002,684 trilinear hexahedral elements. In order to capture the details 
of the boundary layer, the first three layers of elements are very close to the delta-wing surface. A 
significant portion of the mesh is placed in the wake region of the computational domain to model the 
flow in this region with considerable accuracy. A similar finite element mesh which has been coarsened 
for clearer visualization is partially shown in Figure 7. 

The freestream values serve as the initial conditions and we stop the computations when the L2- 
norm of the residual is reduced by more than 2.5 orders of magnitude. At every time step 5,001,03 1 
non-linear equations are solved simultaneously using matrix-free iterations. 

Figures 8-10 show the Mach number contours corresponding to the steady state solution at three 
sections. In Plate 2 the top image shows the pressure distribution on the wing surface and a cross- 
section, while the bottom image shows the top view of the delta-wing together with the pressure field 
around it. 

6.4. 3 0  subsonicjow past a sphere 

Numerous experiments have been carried out to understand the structure of the wake of 
incompressible flow behind a sphere. At Reynolds numbers lower than about 350 the wake formed 
behind a sphere does not involve any instabilities and the flow is axisymmetric. The axisymmetric 
pattern of the flow breaks down at higher Reynolds numbers and the vortices begin to shed 
peri~dically.~' In the approximate range 350 d Re d 750 many researchers have reported one 
dominant mode of vortex shedding with the Strouhal number varying from 0.16 to 0.2, except for 
Reference 3 1 which reports another mode of vortex shedding. When the Reynolds number increases 
further, the flow becomes turbulent. In the approximate range 750 d Re < 10,000 two modes of vortex 
shedding exist. In one of the earliest experiments done by Mo11e?2 a high mode of vortex shedding 
was obtained with water. Later reported both low and high modes of vortex shedding behind 
a sphere at higher Reynolds numbers up to Re = lo5. Kim and D ~ r b i n ~ ~  associate the two modes of 
vortex shedding with the small-scale instability of the separating shear layer and with the large-scale 
instability of the wake. 

We first check the steady state solutions at low Reynolds numbers to assess the accuracy of the 
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Figure 8. 3D supersonic flow past a delta wing: Mach 
number contours on symmetry plane 

Figure 9. 3D supersonic flow past a delta wing: Mach 
number contours on horizontal plane 

algorithm in 3D. The steady state solution is characterized by a vortex ring behind the sphere. The 
freestream Mach number is 0.2 and the Reynolds number ranges between 10 and 300. The Reynolds 
number is based on the diameter and the freestream values. The computational domain covers the 
volume defined by -3 <XI  < 10, -3 < x2 < 3  and -3 < x3 < 3. The centre of the sphere of radius 
r = 0.5 is located at the origin of the co-ordinate system. The computational mesh consists of 234,136 
nodes and 221,408 trilinear hexahedral elements. The finite element mesh is partially shown in Figures 
11 and 12. 

The computation starts with the freestream values and is camed out explicitly with 1,061,757 
equations solved at each explicit pass until the steady state solution is reached. The drag coefficient 
versus the Reynolds number is compared with results from  experiment^^^ in Figure 13. The computed 
results compare very well with the experiments. 

Next we increase the Reynolds number to 400. The time-accurate computatiorl starts from an almost 
steady state solution obtained at this Reynolds number. The time step is set to At=0.0025. The 
axisymmetric structure of the wake breaks down and a transition phase between the steady state and 
periodic solutions is observed after about 100 time units. This can be seen from the time history of the 

Figure 10. 3D supersonic flow past a delta wing: Mach number contours at section X I  = 0.8 
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Figure 11. 3D subsonic flow past a sphere: finite element mexh on xI-xz plane 

Figure 12. 3D subsonic flow past a sphere: surface discretization of sphere together with close-up view of mesh on xI-x2 plane 
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drag coefficient in Figure 14. In the transition phase the vortex shedding appears in the symmetry 
plane. The time histories of the side force coefficients shown in Figure 15 illustrate the non-existence 
of plane symmetry when the flow is well established. The Strouhal number of vortex-shedding is 
0.144. In experiments the Strouhal number is about 0-16 at Reynolds number 400. Plate 3 shows the 
pressure distribution on the sphere surface together with the stream ribbons at time t = 200. 

6.5. Supersonicflow through the air intake of a jet engine 

This axisymmetric computation demonstrates the potential of the DSD/SST formulation to model 
intricate compressible flows involving interactions between boundary layers, shocks and moving 
surfaces. This type of flow is encountered in the air intake of a jet engine with adjustable spool (see 
Figure 16). The efficiency of these engines at supersonic speeds can be improved by moving the spool 
back and forth and thus adapting the outstanding shock. In this problem we consider internal and 
external flow passing an air intake. The freestream Mach number is 2 and the Reynolds number based 
on the freestream values and the gap size is 0.8 x 10'. The computational domain, which covers the 
area defined by - 0.25 -= x1 < 0.70 and 0.0 < x2 < 0.75, is discretized using 48,450 bilinear 

0.66, I 

- 0.63 
4 0.62 

0.50 0.59 IV 
I 

40 80 120 160 200 240 280 320 0.57 A 
Time 

Figure. 14. 3D subsonic flow past a sphere: time history of drag coefficient 

Time 
Figure 15. 3D subsonic flow past a sphere: time histories of side force coefficients 
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\ 

Figure 16. Supersonic flow through air intake of a jet engine: configuration of jet engine 

quadrilateral elements and 49,091 nodes. At each time step 386,974 non-linear equations are solved 
simultaneously with the GMRES update technique with nodal block-diagonal preconditioning. At 
t= 0.0 the computation starts with the freestream values as the initial conditions and at t= 1.0 the 
spool starts moving with the equation of motion 

x1 = -Lsin[2lr(t - l ) f ] ,  1 6 1 6 2 ,  

Figure 17. Supersonic flow through air intake of a jet engine: close-up views of finite element meshes corresponding to initial 
(top) and final (bottom) positions of spool 
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where L = 0.2 is the maximum range of the motion and f = 0.25 is the frequency. For t > 2 the spool 
remains stationary. 

The mesh-moving strategy used for this problem is such that the connectivity of the mesh remains 
unchanged throughout the simulation. This eliminates the projection errors associated with remeshing 
and also eliminates the parallelization overhead associated with remeshing . Figure 17 shows close-up 
views of the finite element meshes corresponding to the initial and final positions of the spool. A 
sequence of frames depicting the Mach number in the time interval [O-0, 2.51 is presented in Plate 4. 

7. CONCLUSIONS 

We select the delta-wing problem as a benchmark to measure the speed and efficiency of our 
computations on the Connection Machine CM-5. To investigate the scalability of the finite element 
programme, we employ three unstructured meshes with different levels of refinement to solve this 
problem. In all cases the numerical integration is achieved using 2 x 2 x 2 Gaussian quadrature and the 
non-linear system of equations is solved with the matrix-free GMRES iteration technique. The Krylov 
subspace dimension is set to 10. 

Table I summarizes the performance of these computations on the CM-5. The reported computation 
rates exclude input and output (VO) tasks and the communication costs are measured compared with 
the total time again excluding I/O. From the results obtained, one can reach the following conclusions. 

1. The scalability of the CM-5 system and the finite element solver is well established. The 
gigaFLOPS rates of 2 6 ,  5.1 and 9.8, obtained on 128, 256 and 512 processing nodes 
respectively, all correspond to subgrid lengths (number of elements per processing node) in the 
range 195Ck2350. In other words, by keeping the subgrid length relatively high and almost 
constant, we obtain a linear speed-up as we increase the number of processors. 

2. The communication cost decreases to a certain point as the subgrid size increases. 

We also use the sphere problem to present the performance of our computations on different 
partitions of the CM-200. In this case the numerical integration is carried out using 2 x 2 x 2 Gaussian 
points and the solution of the non-linear system of equations is approximated with one explicit pass at 

Table I. 3D supersonic flow past a delta-wing: implicit time integration performance on CM-5 with different 
partition sizes 

Mesh 1 Mesh 2 Mesh 3 
Nodes 309,507 Nodes 542,888 Nodes 1,032,328 
Elements 297,624 Elements 523,674 Elements 1,002,684 
Equations 1,495,112 Equations 2,628,126 Equations 5,001,031 

Computation rate 
(gigaFLOPS) 

Communication cost 
("/I 
Non-linear iteration cost 
(shteration) 

Non-linear iteration cost 
(pshteratiodnode) 

128 PNs 
256 PNs 
512 PNs 
128 PNs 
256 PNs 
512 PNs 
128 PNs 
256 PNs 
512 PNs 
128 PNs 
256 PNs 
512 PNs 

2.6 
5.6 

11.6 
12.6 
23.2 
27.0 
16.7 
7.7 
3.7 

54.5 
24.9 
11.9 

- 
5.1 

12.4 
- 

13.5 
18.5 
- 

14.7 
6.0 
- 

27.1 
11.1 

- 
14.5 
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Table 11. 3D subsonic flow past a sphere: explicit time integration performance on CM-200 
with different partition sizes 

8192 16,384 32,768 
processors processors processors 

Computation rate (gigaFLOPS) 0.33 0.66 1.30 
Communication cost (YO) 33.1 33.1 33.2 
Non-linear iteration cost @/iteration) 8.7 4.3 2.2 
Non-linear iteration cost (pliteratiodnode) 37.2 18.5 9.3 

each time step. Table I1 summarizes the performance of these computations. Input and output are 
excluded from the reported computation rates and the total time is the base for measuring the 
communication costs. 

In these computations the ideal linear speed-up is obtained. The computation rate increases by a 
factor of two when we double the number of processors. The communication cost remains 33% of the 
total time for all partitions. 
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APPENDIX 

In this appendix the coefficient matrices of the compressible Navier-Stokes equations corresponding 
to equation (16) are presented. The parameters used to define these matrices have been described 
throughout this paper. The additional parameters employed to simplify these matrices are 

R 
C" = ~ 

y -  1 '  (49) 
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The coefficient matrices are then 

1 
K2l =- 

P 

803 

(54) 
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1 
K22 == - 

P 

REFERENCES 

1. T. J. R. Hughes and A. N. Brooks, ‘A multi-dimensional upwind scheme with no crosswind diffusion’, in T. J. R. Hughes 
(ed.) Finite Element Methods for Convection Dominated Flows, AMD Vol. 34, ASME, New York, 1979, pp. 19-35. 

2. A. N. Brooks and T. J. R. Hughes. ‘Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with 
particular emphasis on the incompressible Navier-Stokes equations’, Comput. Methods Appl. Mech. Eng., 32, 199-259 
(1982). 

3. T. E. Tezduyar and T. J. R. Hughes, ‘Finite element formulations for convection dominated flows with particular emphasis on 
the compressible Euler equations’, AIAA Paper 83-0125, 1983. 

4. T. J. R. Hughes, L. P. Franca and M. Mallet, ‘A new finite element formulation for computational fluid dynamics: 1. 
Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics’, Comput. 
Methods Appl. Mech. Eng., 54, 223-234 (1986). 

5. T. J. R. Hughes and M. Mallet, ‘A new finite element formulation for computational fluid dynamics: 111. The generalized 
streamline operator for multidimensional advective-diffisive systems’, Comput. Methods Appl. Mech. Eng. 58, 305-328 
(1986). 

6. T. J. R. Hughes and M. Mallet, ‘A new finite element formulation for computational fluid dynamics: I\! A discontinuity- 
capturing operator for multidimensional advective-diffisive systems’, Comput. Methods Appl. Mech. Eng., 58, 329-339 
(1986). 

7. G. J. Le Beau and T. E. Tezduyar, ‘Finite element computation of compressible flows with the SUPG formulation’, in M. N. 
Dhaubhadel, M. S. Engelman and J. N. Reddy (eds.), Advances in Finite Element Analysis in Fluid Dynamics, FED Vol. 123, 
ASME, New York, 1991, pp. 21-27. 

8. G. J. Le Beau, S. E. Ray, S. K. Aliabadi and T. E. Tezduyar, ‘SUPG finite element computation of compressible flows with 
the entropy and conservation variables formulations’, Comput. Methodr Appl. Mech. Eng., 104, 2 7 4 2  (1993). 



PARALLEL FLUID DYNAMICS COMPUTATIONS 805 

9. S. K: Aliabadi, S. E. Ray and T. E. Tezduyar, ‘SUPG finite element computation of compressible flows with the entropy and 
conservation variables formulations’, Comput. Mech., 11, 300-3 12 (1 993). 

10. S. K. Aliabadi and T. E. Tezduyar, ’Massively parallel compressible flow computations in aerospace applications’, Pre-conf: 
Proc. Second Japan-US Symp. on Finite Element Methods in Large-Scale Computational Fluid Dynamics, Tokyo, 1994. 

11,  T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson and S. Mittal, ‘Massively parallel finite element computation of  three- 
dimensional flow problems’, Proc. 6th Jn. Numerical Fluid Dynamics Symp., Tokyo, 1992, pp. 15-24. 

12. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson and S. Mittal, ‘Parallel finite-element computation of 3D flows’, IEEE 
Comput., 26, (lo), 27-36 (1993). 

13. C. W. Hirt, A. A. Amsden and J. L. Cook, ‘An arbitrary Lagrangian Eulerian computing method for all flow speeds’, l 
Comput. Phys., 14, 227-253 (1974). 

14. T. J. R. Hughes, W. K. Liu and T. K. Zimmermann, ‘Lagangian-Eulerian finite element formulation for incompressible 
viscous flows’, Comput. Methods Appl. Mech. Eng., 29, 329-349 (1981). 

15. B. Ramaswamy and M. Kawahara, ‘Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, 
incompressible viscous free surface fluid flow’, Int. j .  numet methodspuids, 7 ,  1053-1075 (1987). 

16. A. Huerta and W. K. Liu, ‘Viscous flow with large free surface motion’, Comput. Methods Appl. Mech. Eng., 69, 277-324 
(1988). 

17. T. E. Tezduyar, M. Behr and J. Liou, ‘A new strategy for finite element computations involving moving boundaries and 
interfaces-the deforming-spatial-domaidspace-time procedure: 1. The concept and the preliminary tests’, Comput. 
Methods Appl. Mech. Eng., 94, 339-351 (1992). 

18. T. E. Tezduyar, M. Behr, S. Mittal and J. Liou, ‘A new strategy for finite element compuations involving moving boundaries 
and interfaces-the deforming-spatial-domaidspacetime procedure: 11. Computation of free-surface flows, two-liquid 
flows, and flows with drifting cylinders’, Comput. Methods Appl. Mech. Eng., 94, 353-371 (1992). 

19. S. K. Aliabadi and T. E. Tezduyar, ‘Space-time finite element computation of compressible flows involving moving 
boundaries and interfaces’, Comput. Methods Appl. Mech. Eng., 107, 209-224 (1993). 

20. M. Mallet, ‘A finite element method for computational fluid dynamics’, Ph.D. Thesis, Department of Civil Engineering, 
Stanford University, 1985. 

21. T. E. Tezduyar and T. J. R. Hughes, ‘Development of time-accurate finite element techniques for first-order hyperbolic 
systems with particular emphasis on the compressible Euler equations’, NASA-Ames University Consortium Interchange, 
Rep. NCA2-OR745-I 04, 1982. 

22. F. Shakib, ‘Finite element analysis o f  the compressible Euler and Navier-Stokes equations’, Ph.D. Thesis, Department of 
Mechanical Engineering, Stanford University, 1988. 

23. T. J. R. Hughes, The Finite Element Method, Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Engelwood 
Cliffs, NJ, 1987. 

24. M. Behr, ‘Stabilized finite element methods for incompressible flows with emphasis on moving boundaries and interfaces’, 
Ph.D. Thesis, Department of Aerospace Engineering, University of  Minnesota, 1992. 

25. Y. Saad and M. Schultz, ‘GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems’, 
SIAMl Sci. Stat. Comput., 7, 856-869 (1986). 

26. Y. Saad, ‘A flexible inner-outer preconditioned GMRES algorithm’, SIAMl  Sci. Comput. 14, 461469 (1993). 
27. J. Cousteix, Turbulence et Couche Limife, Cepadues Editions, 1990. 
28. R. Das, D. J. Mavriplis, J. Saltz, S. Gupta and R. Ponnusamy, ‘The design and implementaiton of parallel unstructured Euler 

29. Z. Johan, K. K. Mathur and S. L. Johnsson, ‘An efficient communication strategy for finite element methods on the 

30. H. Sakamotto and H. Haniu, ‘A study on vortex shedding from spheres in a uniform flow’, JT Fluids Eng., 112, 386-392 

31. R. H. Magarvey and R. L. Bishop, ‘Wakes in liquid-liquid systems’, Phys. Fluids, 4, 800-805 (1961). 
32. W. Moller, ‘Experimentelle Untersuchung zur Hydromechanick der Hugel’, Phys. Z., 35, 57-80 (1938). 
33. C. Cometta, ‘An investigation o f  the unsteady flow pattern in the wake of cylinder and spheres using a hot wire probe’, Tech. 

34. K. J. Kim and P A. Durbin, ‘Observation of the frequencies in a sphere wake and drag increase by acoustic excitation’, Phys. 

35. H. Schlichting, Boundary-Layer Theory, 7th edn., McGraw-Hill, New York, 1979. 

solver using software primitives’, .4IAA Paper 92-0562, 1992. 

connection machine CM-5’, Comput. Methods Appl. Mech. Eng., in press. 

(1990). 

Rep. WT-21, Division of Engineering, Brown University, 1957. 

Fluids, 31, 3260-3265 (1961). 




